Abstract
It has been known that three core transcription factors (TFs), NANOG, OCT4, and SOX2, collaborate to form a transcriptional circuitry to regulate pluripotency and self-renewal of human embryonic stem (ES) cells. Similarly, MYC also plays an important role in regulating pluripotency and self-renewal of human ES cells. However, the precise mechanism by which the transcriptional regulatory networks control the activity of ES cells remains unclear. In this study, we reanalyzed an extended core network, which includes the set of genes that are cobound by the three core TFs and additional TFs that also bind to these cobound genes. Our results show that beyond the core transcriptional network, additional transcriptional networks are potentially important in the regulation of the fate of human ES cells. Several gene families that encode TFs play a key role in the transcriptional circuitry of ES cells. We also demonstrate that MYC acts independently of the core module in the regulation of the fate of human ES cells, consistent with the established argument. We find that TP53 is a key connecting molecule between the core-centered and MYC-centered modules. This study provides additional insights into the underlying regulatory mechanisms involved in the fate determination of human ES cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.