Abstract

Abstract A novel steel grade has been developed recently exhibiting superior thermal stability. This is attributed to the combined precipitation of secondary hardening carbides and intermetallic phases. However, the precipitation behaviour of this steel is not completely understood yet. In this study, computer simulations of the precipitation kinetics during heat treatment of this steel are performed and compared to a complementary experimental characterisation of the precipitate microstructure, which was carried out previously. The simulations employ a novel model for nucleation, growth and coarsening of precipitates in multi-component, multi-phase systems. It is shown that the combination of experimental investigation and computer simulation provides a most comprehensive picture of the complex processes occurring in these materials during thermo-mechanical treatment, which cannot be obtained by the use of one single technique, experiment or simulation, only.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call