Abstract

BackgroundProtein secretion is a cell translocation process of major biological and technological significance. The secretion and downstream processing of proteins by recombinant cells is of great commercial interest. The yeast Kluyveromyces lactis is considered a promising host for heterologous protein production. Because yeasts naturally do not secrete as many proteins as filamentous fungi, they can produce secreted recombinant proteins with few contaminants in the medium. An ideal system to address the secretion of a desired protein could be exploited among the native proteins in certain physiological conditions. By applying algorithms to the completed K. lactis genome sequence, such a system could be selected. To this end, we predicted protein subcellular locations and correlated the resulting extracellular secretome with the transcription factors that modulate the cellular response to a particular environmental stimulus.ResultsTo explore the potential Kluyveromyces lactis extracellular secretome, four computational prediction algorithms were applied to 5076 predicted K. lactis proteins from the genome database. SignalP v3 identified 418 proteins with N-terminal signal peptides. From these 418 proteins, the Phobius algorithm predicted that 176 proteins have no transmembrane domains, and the big-PI Predictor identified 150 proteins as having no glycosylphosphatidylinositol (GPI) modification sites. WoLF PSORT predicted that the K. lactis secretome consists of 109 putative proteins, excluding subcellular targeting. The transcription regulators of the putative extracellular proteins were investigated by searching for DNA binding sites in their putative promoters. The conditions to favor expression were obtained by searching Gene Ontology terms and using graph theory.ConclusionA public database of K. lactis secreted proteins and their transcription factors are presented. It consists of 109 ORFs and 23 transcription factors. A graph created from this database shows 134 nodes and 884 edges, suggesting a vast number of relationships to be validated experimentally. Most of the transcription factors are related to responses to stress such as drug, acid and heat resistance, as well as nitrogen limitation, and may be useful for inducing maximal expression of potential extracellular proteins.

Highlights

  • Protein secretion is a cell translocation process of major biological and technological significance

  • To identify GPI modification sites, the open reading frames (ORFs) were submitted to big-PI Predictor [20], with the results indicating that 150 ORFs contained a signal peptide, no transmembrane domain, and no GPI modification site

  • The results indicated the presence of 65 different transcription factor binding sites (TFBSs)

Read more

Summary

Introduction

Protein secretion is a cell translocation process of major biological and technological significance. Some proteins lacking N-terminal signal sequences reach the extracellular medium, the majority of soluble secreted proteins in K. lactis are likely to be transported via the GSP [1]. Once the input data type are fixed, the methods for making predictions are basically by two methods: the manual construction of explicit rules for localization prediction using current knowledge of sorting signals, or applying data-driven, machine-learning techniques (e.g., Neural Networks (NN) or Hidden Markov Models, (HMMs)) [12]. The latter automatically extracts decision rules from the sets of proteins with known location, without making any prior, detailed assumptions about the features of interest

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call