Abstract

This study aims to investigate the impact of hormonal imbalances during menopause, compounded by the natural ageing process, on bone health. Specifically, it examines the effects of increased bone turnover and focal bone balance on bone mass. A three-dimensional computational bone remodeling model was employed to simulate the response of the femur to habitual loads over a 19-year period, spanning premenopause, menopause, and postmenopause. The model was calibrated using experimental bone mineral density data from the literature to ensure accurate simulations. The study reveals that individual alterations in bone turnover or focal bone balance do not fully account for the observed experimental outcomes. Instead, simultaneous changes in both factors provide a more comprehensive explanation, leading to increased porosity while maintaining the material-to-apparent density ratio. Additionally, different load scenarios were tested, demonstrating that reaching the clinical osteoporosis threshold is independent of the timing of load changes. However, underload scenarios resulted in the threshold being reached approximately 6 years earlier than overload scenarios. These findings hold significant implications for strategies aimed at delaying the onset of osteoporosis and minimizing fracture risks through targeted mechanical stimulation during the early stages of menopause.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.