Abstract
Finding a material with all the desired properties for a photocatalytic water splitter is a challenge yet to be overcome, requiring both a surface with ideal energetics for all steps in the hydrogen and oxygen evolution reactions (HER and OER) and a bulk band gap large enough to mediate said steps. We have instead examined separating these challenges by investigating the energetic properties of two-dimensional transition metal dichalcogenides (TMDCs) that could be used as a surface coating to a material with a large enough bulk band gap. First we investigated the energetics of monolayer MoS2 and PdSe2 using density functional theory and then investigated how these energetics changed when they were combined into a heterostructure. Our results show that the surface properties were practically (0.2 eV) unchanged when combined and the MoS2 layer aligns well with the OER and HER. This work highlights the potential of TMDC monolayers as surface coatings for bulk materials that have sufficient band gaps for photocatalytic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.