Abstract
Tyrosinase, a copper-containing oxidase, plays a vital role in the melanin biosynthesis pathway. Mutations in the tyrosinase gene can disrupt the hydroxylation of tyrosine, leading to decreased production of 3,4-dihydroxyphenylalanine (DOPA). Consequently, this impairs the subsequent formation of dopaquinone, a key precursor in melanin pigment synthesis. This study aimed to identify the deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) within the TYR gene that exert an influence on the human TYR protein. Additionally, we evaluated the impact of 10 FDA-approved drugs on the protein stability of mutated structures, exploring the potential for inhibitory pharmaceutical interventions. Through various bioinformatics tools, we detected 47900 nsSNPs, particularly K142M, I151N, M179R, S184L, L189P, and C321R, which were found to be the most deleterious variants, decreasing the protein stability. These drugs (Sapropterin, Azelaic Acid, Menobenzone, Levodopda, Mequinol, Arbutin, Hexylresorcinol, Artenimol, Alloin and Curcumin) interacted with the binding sites in four mutant models K142M, I151N, M179R, and S184L proving that these ligands directly bind with the active site of mutant tyrosinase protein to inhibit it's working. On the other hand, two mutant models L189P and C321R did not show any binding site residue interaction with any ligands. In conclusion, this in-silico analysis of deleterious nsSNPs in the TYR gene, coupled with the evaluation of ligands/drugs on mutated tyrosinase structures not only advances our understanding of molecular variations but also highlights promising pathways for targeted inhibitory interventions in the intricate network of melanin biosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.