Abstract
The lowest energy crystalline structures of various stoichiometric titanium boride (Ti-B) intermetallic compounds are sought based on density functional theory combined with the particle-swarm optimization (PSO) technique. Besides three established experimental structures, i.e., FeB-type TiB, AlB2-type, and Ta3B4-type Ti3B4, we predict additional six metastable phases at these stoichiometric ratios, namely, α- and β-phases for TiB, TiB2, and Ti3B4, respectively. Moreover, we predict the most stable crystalline structures of four new titanium boride compounds with different stoichiometric ratios: Ti2B-PSA, Ti2B3-PSB, TiB3-PSC, and TiB4-PSD. Notably, Ti2B-PSA is shown to have lower formation energy (thus higher stability) than the previously proposed Al2Cu-type Ti2B. The computed convex-hull and phonon dispersion relations confirm that all the newly predicted Ti-B intermetallic crystals are thermodynamically and dynamically stable. Remarkably, the predicted α-TiB2 and β-TiB2 show semi-metal-like electronic properties and possess high Vickers hardnesses (39.4 and 39.6 GPa), very close to the lower limit of superhard materials (40 GPa). Analyses of band structure, density of states, electronic localization function, and various elastic moduli provide further understanding of the electronic and mechanical properties of the intermetallic titanium borides. We hope the newly predicted hard intermetallic titanium borides coupled with desirable electronic properties and high elastic modulus will motivate future experimental synthesis for applications such as high-temperature structural materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.