Abstract
Airway epithelial cells (AECs) play a central role in the pathogenesis of many lung diseases. Consequently, advancements in our understanding of the underlying causes of lung diseases, and the development of novel treatments, depend on continued detailed study of these cells. Generation and analysis of high-throughput gene expression data provide an indispensable tool for carrying out the type of broad-scale investigations needed to identify the key genes and molecular pathways that regulate, distinguish, and predict distinct pulmonary pathologies. Of the available technologies for generating genome-wide expression data, RNA sequencing (RNA-seq) has emerged as the most powerful. Hence many researchers are turning to this approach in their studies of lung disease. For the relatively uninitiated, computational analysis of RNA-seq data can be daunting, given the large number of methods and software packages currently available. The aim of this chapter is to provide a broad overview of the major steps involved in processing and analyzing RNA-seq data, with a special focus on methods optimized for data generated from AECs. We take the reader from the point of obtaining sequence reads from the lab to the point of making biological inferences with expression data. Along the way, we discuss the statistical and computational considerations one typically confronts during different phases of analysis and point to key methods, software packages, papers, online guides, and other resources that can facilitate successful RNA-seq analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.