Abstract

In this study, we used an integrative computational approach to examine molecular mechanisms underlying functional effects of the D614G mutation by exploring atomistic modeling of the SARS-CoV-2 spike proteins as allosteric regulatory machines. We combined coarse-grained simulations, protein stability and dynamic fluctuation communication analysis with network-based community analysis to examine structures of the native and mutant SARS-CoV-2 spike proteins in different functional states. Through distance fluctuations communication analysis, we probed stability and allosteric communication propensities of protein residues in the native and mutant SARS-CoV-2 spike proteins, providing evidence that the D614G mutation can enhance long-range signaling of the allosteric spike engine. By combining functional dynamics analysis and ensemble-based alanine scanning of the SARS-CoV-2 spike proteins we found that the D614G mutation can improve stability of the spike protein in both closed and open forms, but shifting thermodynamic preferences towards the open mutant form. Our results revealed that the D614G mutation can promote the increased number of stable communities and allosteric hub centers in the open form by reorganizing and enhancing the stability of the S1-S2 inter-domain interactions and restricting mobility of the S1 regions. This study provides atomistic-based view of allosteric communications in the SARS-CoV-2 spike proteins, suggesting that the D614G mutation can exert its primary effect through allosterically induced changes on stability and communications in the residue interaction networks. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call