Abstract

In this paper, we applied the molecular dynamics (MD) simulations and used thermolysin as the system to study the overall protein dynamics and side chain dihedral angles across the Arrhenius break. Simulations were performed at a high temperature of 36 °C which is above the previously observed Arrhenius break, and the lower temperature of 20 °C which is below the Arrhenius break. We observed different protein dynamics and conformational heterogeneity of side chain dihedral angles of thermolysin at the two temperatures. Our results indicated that certain regions of thermolysin have a higher level of fluctuation at lower temperature. A temperature dependent dihedral angles were also observed at the two temperatures. The changes observed in the protein indicated key areas of temperature sensitivity within the protein. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.