Abstract

meta-Chlorophenylguanidine (1) is a non-competitive α7 nicotinic acetylcholine receptor (nAChR) antagonist. Here we examined the hydrogen bond donor role of the anilinic N1–H on the inhibitory effect of 1 by preparing its N1–CH3 counterpart 2. Analog 2 was found to be at least as potent as 1 as a non-competitive α7 nAChR antagonist in a patch-clamp assay.To establish a structural basis for the mode of interaction of guanidines 1 and 2, we generated 100 homology models of the hα7 nAChR. This was followed by Connolly surface (SYBYL-X2.1) and blind docking (AutoDock 4.1) studies to identify eight possible binding pockets, two of which were supported by empirical data and employed in our docking studies. The optimized model-ligand complexes were analyzed using a Hydropathic INTeractions (HINT) analysis in order to compare and contrast different binding pockets and modes. We identified a potential allosteric binding site and distinct rotameric binding modes for 1 and 2 at α7 nAChRs. These differences in the binding orientations minimized the importance of an anilinic NH function for the antagonist activity at nACh receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.