Abstract

Abstract After applying a magnetic field, the behavior of the partly ionized liquids is completely different from that of the ordinary fluids. In this study, we concentrated on the Cattaneo–Christov heat flux model-based three-dimensional partly ionized bio-convective flow of a second-order fluid on a bidirectional permeable stretching surface. The development of the thermal and solutal flow models takes into account the impacts of non-uniform sources and sinks, Ohmic viscous dissipation, and chemical reactions. In addition, the surface boundary effects of electron and ion collisions with convective boundary conditions are seen. The mathematical flow model is transformed appropriately to create an ordinary differential equations, which is then numerically solved with MATLAB’s BVP4C approach. To demonstrate the physical relevance of the flow field along various developing parameters, graphical and tabular results are created. It is noteworthy to note that while fluid temperature decreases with stronger values of the second-order fluid parameter, fluid velocity improves in both directions. In addition, it is shown that raising the thermal and concentration relaxation parameters, respectively, causes a drop in the fluid temperature and nanoparticle concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.