Abstract

The overall objective of this study was to introduce knee joint power as a potential measure to investigate knee joint stability following total knee arthroplasty (TKA). Specific aims were to investigate whether weakened knee joint stabilizers cause abnormal kinematics and how it influences the knee joint kinetic (i.e., power) in response to perturbation.Patient-specific musculoskeletal models were simulated with experimental gait data from six TKA patients (baseline models). Muscle strength and ligament force parameter were reduced by up to 30% to simulate weak knee joint stabilizers (weak models). Two different muscle recruitment criteria were tested to examine whether altered muscle recruitment pattern can mask the influence of weakened stabilizers on the knee joint kinematics and kinetics. Level-walking knee joint kinematics and kinetics were calculated though force-dependent kinematic and inverse dynamic analyses. Bode analysis was then recruited to estimate the knee joint power in response to a simulated perturbation.Weak models resulted in larger anterior-posterior (A-P) displacement and internal-external (I-E) rotation compared to baseline (I-E: 18.4 ± 8.5 vs. 11.6 ± 5.7 (deg), A-P: 9.7 ± 5.6 vs. 5.5 ± 4.1 (mm)). Changes in muscle recruitment criterion however altered the results such that A-P and I-E were not notably different from baseline models. In response to the simulated perturbation, weak models versus baseline models generated a delayed power response with unbounded magnitudes. Perturbed power behavior of the knee remained unaltered regardless of the muscle recruitment criteria.In conclusion, impairment at the knee joint stabilizers may or may not lead to excessive joint motions but it notably affects the knee joint power in response to a perturbation. Whether perturbed knee joint power is associated with the patient-reported outcome requires further investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.