Abstract

Turbulent pressure drop and heat transfer characteristics in tubes with three different kinds of internally longitudinal fin patterns (interrupted wavy, sinusoidal wavy and plain) are numerically investigated for Re = 904–4,520. The channel velocity, temperature, and turbulence fields are obtained to discern the mechanisms of heat transfer enhancement. Numerical results indicate that the steady and spatially periodic growth and disruption of cross-sectional vortices occur near the tube/fin walls along the streamwise locations. The thermal boundary layers near the tube/fin surfaces are thereby periodically interrupted, with heat transfer near the recirculation zones being enhanced. The overall heat transfer coefficients in wavy channels are higher than those in a plain fin channel, while with larger pressure drop penalties. At the same waviness, the interrupted wavy fin tube could enhance heat transfer by 72–90%, with more than 2–4 times of pressure drop penalty. Among the fins studied, the sinusoidal wavy fin has the best comprehensive performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call