Abstract

Abstract The present work numerically investigates the mass and heat transport flow of micropolar fluid in a channel having permeable walls. The appropriate boundary layer approximations are used to convert the system of flow model equations in ODEs, which are then numerically treated with the quasi-linearization method along with finite difference discretization. This technique creates an efficient way to solve the complex dynamical system of equations. A numerical data comparison is presented which assures the accuracy of our code. The outcomes of various problem parameters are portrayed via the graphs and tables. The concentration and temperature accelerate with the impacts of the Peclet numbers for the diffusion of mass and heat, respectively. It is also found that the porosity of the medium has a substantial effect on the skin friction but low effect on the heat and mass transfer rates. Our results may be beneficial in lubrication, foams and aerogels, micro emulsions, micro machines, polymer blends, alloys, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call