Abstract

The fractional model of diffusion equations is very important in the study of oil pollution in the water. The key objective of this article is to analyze a fractional modification of diffusion equations occurring in oil pollution associated with the Katugampola derivative in the Caputo sense. An effective and reliable computational method q-homotopy analysis generalized transform method is suggested to obtain the solutions of fractional order diffusion equations. The results of this research are demonstrated in graphical and tabular descriptions. This study shows that the applied computational technique is very effective, accurate, and beneficial for managing such kind of fractional order nonlinear models occurring in oil pollution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.