Abstract

Thermal folding molecular dynamics simulations of the domain C5 of Myosin binding protein C were performed using a native-centric model to study the role of three mutations related to Familial Hypertrophic Cardiomyopathy. Mutation of Asn755 causes the largest shift of the folding temperature, and the residue is located in the CFGA' beta-sheet featuring the highest phi-values. The mutation thus appears to reduce the thermodynamic stability in agreement with experimental data. The mutations on Arg654 and Arg668, conversely, cause little change in the folding temperature and they reside in the low phi-value BDE beta-sheet, so that their pathological role cannot be related to impairment of the folding process but possibly to the binding with target molecules. As the typical signature of Domain C5 is the presence of a longer and destibilizing CD-loop with respect to the other Ig-like domains, we completed the work with a bioinformatic analysis of this loop showing a high density of negative charge and low hydrophobicity. This indicates the CD-loop as a natively unfolded sequence with a likely coupling between folding and ligand binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.