Abstract

Dopamine signaling is involved in a number of brain pathways, and its disruption has been suggested to be involved in the several disease states, including Parkinson's disease (PD), schizophrenia, and attention deficit hyperactivity disorder (ADHD). It has been hypothesized that altered storage, release, and reuptake of dopamine contributes to both the hypo- and hyperdopaminergic states that exist in various diseases. Here, we use our recently described mathematical model of dopamine metabolism, combined with a comprehensive Monte Carlo simulation analysis, to identify key determinants of dopamine metabolism associated with the dysregulation of dopamine homeostasis that may contribute to the pathogenesis of dopamine-based disorders. Our model reveals that the dopamine transporter (DAT), the vesicular monoamine transporter (VMAT2), and the enzyme monoamine oxidase (MAO) are the most influential components controlling the synaptic level of dopamine and the formation of toxic intracellular metabolites. The results are consistent with experimental observations and point to metabolic processes and combinations of processes that may be biochemical drivers of dopamine neuron degeneration. Since many of the identified components can be targeted therapeutically, the model may aid in the design of combined therapeutic regimens aimed at restoring proper dopamine signaling with toxic intermediates under control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.