Abstract

The compressive strain hardening behaviour of a novel bimetal with pearlitic steel and low carbon steel was investigated by computational analysis based on the isothermal compression tests in a wide range of deformation temperature and strain rate. The Hollomon’s equation was employed to calculate the strain hardening exponent (SHE) with the assistance of mathematical manipulation. The result shows that the logarithmic relationship between the flow stress and plastic strain of the bimetal is highly non-linear, which results in the variation of the SHE of the bimetal. This variation reflects the dynamic competition between the strain hardening and softening mechanism by the varying value of the SHE in the range of 0.4 to-0.4. Furthermore, the influences of deformation temperature and strain rate on the SHE are significant. With decreasing temperature and increasing strain rate, the strain hardening of the bimetal was enhanced, while the dynamic recrystallisation was activated under the opposite conditions with the evidence of negative SHE value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.