Abstract

For a multidimensional analysis of a two-phase flow, a computational fluid dynamics (CFD) code was developed with the implementation of an interfacial area transport equation that is beneficial for dynamically estimating the interfacial area concentration (IAC). The code structure was based on the two-fluid model and the Simplified Marker and Cell (SMAC) algorithm. The SMAC algorithm was extended to a two-phase flow simulation with a phase change. Various well-known constitutive models regarding boiling, condensation, and nondrag forces have been implemented into the code. To verify the robustness of the code to predict wall boiling and void propagation phenomena, a subcooled boiling test in a vertical annulus channel was analyzed as a benchmark problem. As the analysis results, a model for bubble departure diameter on the heated wall was identified as the principal factor for subcooled boiling phenomena, and the limitation of the current departure diameter models under a low-pressure condition resulted in a deviation of the void fraction and IAC when compared with the results of the experiment. It is necessary that the research on the interfacial area transport equation focuses on modeling reliable source terms for the boiling mechanism as a future work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.