Abstract
Abstract In this article, magnetohydrodynamic (MHD) mixed convection in an exponentially stretchable surface saturated with viscous fluid has been studied. BVPh 2.0 is employed which is mathematica-based algorithm created on the basis of optimal homotopy analysis method (OHAM). Adequate transformations are utilized for the conversion of governing system into nonlinear ordinary differential system. Convergence of BVPh 2.0 results is demonstrated through tabular values of squared residual errors. Graphical analysis is executed for broad range of governing parameters. It has been revealed an increase in buoyancy leads to the growth of boundary layer width. Further results predict the heat infiltration into the fluid increases as Brownian motion and Biot number enlarges. Mathematically this work exhibits the potential of BVPh 2.0 for nonlinear differential systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Thermal Science and Engineering Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.