Abstract

Abstract Structural responses, deformation modes, blast resistance and energy absorption of foam core signify some major functional characteristics for design of sandwich panels. This study aimed to address these issues by investigating uniform and graded foam core configurations. First, an experimental study was performed and the testing results of blast-loaded sandwich panels were analyzed. Second, a numerical model was developed and validated by comparing the simulation results with the experimental results in terms of deformation modes and back facesheet deflection. Third, the blast resistance of sandwich panels was comprehensively studied based upon the developed numerical models. Due to the high attenuation ability of the shock induced stress wave, the foam core with descending gradient of layer density across the thickness direction provided the highest blast resistance of all the core configurations considered here and its advantage could be further improved by enlarging the density difference of the core layer. While keeping total facesheet thickness unchanged, a relatively thick back facesheet is beneficial to enhance the blast resistance under relative low blast intensity. Finally, an optimization study was performed to improve the blast resistance of graded core sandwich panels. For the single objective optimization, the maximum back facesheet deflection of the optimum design decreased by 24.58% in comparison with that for the initial baseline design. For the multiobjective optimization, the optimal designs obtained from the Pareto solution can significantly enhance weight efficiency without compromising the resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.