Abstract

Antigenic drift causes number of mutations in neuraminidase protein of H1N1 swine influenza virus. We analyzed neuraminidase mutations in H1N1 strains distributed over six continents, at both the sequence and structural level. Mutations in the nearby residues of the drug binding site play crucial role in the binding affinity of the drug with the protein. For this purpose, mutant models were generated for the neuraminidase protein from 34 pandemic H1N1 isolates and docking were performed with zanamivir drug. Multiple sequence alignment (MSA) and variations in docking score suggest that there are considerable changes in the binding affinity of neuraminidase with zanamivir, which leads to probable ineffectiveness of zanamivir in the isolated samples of pandemic H1N1 collected from quite a few countries. To further evaluate the effectiveness of the antiviral drugs, we derived, calibrated and analyzed an ordinary differential equations based mathematical model for H1N1 infection dynamics and drug mediated virus deactivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.