Abstract

In wind turbines, blades are critical design members because performance depends on blade material, shape, twist angle, etc. The problem of internal, mechanical design and material selection for a prototypical high-power horizontal axis wind turbine blade under static, flap-wise loading is investigated in this study. At first a materials selection methodology has been proposed. A very detailed computational analysis based on finite element modes is developed representing the load-carrying box girder of the blade with a given airfoil shape, size, and the type and position of the interior load-bearing longitudinal beams–shear webs. Results concerning displacements and stresses are generated using both plane and shell elements with linear and nonlinear analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.