Abstract

3D computational analyses are achieved to predict seriously the influences of thermal buoyancy strength and Dean number on Dean vortices, flow behavior and the rate heat transfer through 180° curved channel of square cross-sectional form. The work shows many results, so this paper emphasizes only on the results of 60° cross-sectional position of the bend duct. The principal partial equations of continuity, momentum and energy are considering in three dimensions under the following assumptions: flow is incompressible and laminar, and it is solved in steady-state. The aforementioned equations are subjected to suitable boundary conditions under following range as: Dean number of De = 125 to 150, Richardson number of Ri = 0 to 2 at fixed value of Prandtl number Pr = 1. The principal results of this work are illustrated as streamline and isotherm contours to draw to flow patterns and temperature distributions respectively. The axial velocity profile is shown versus above conditions, the local Nusselt number is also presented along the wall of 60° cross-sectional position. The results show that the thermal buoyancy can balance the effect of centrifugal force of fluid particles at the angular position of 60°.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.