Abstract

Existence of iron (Fe) is important for cells of living systems; however, its level of magnitude for those patients infected by novel coronavirus disease (COVID-19) is still a challenging issue. Therefore, such mechanism of function was investigated in this work by assistance of thiofavipiravir (TFav) compounds generated by the well-known favipiravir (Fav) drug used for medication of COVID-19 patents. To this aim, sulfur-substitutions of oxygen atoms of Fav were done and the obtained parent structures were prepared for participating in Fe-chelation function. The results indicated that the modes were suitable for running such Fe-chelation processes, in which favorability and strength the models were ranged in this order: 1O2S-Fe > 1S2S-Fe > 1O2O-Fe > 1S2O-Fe. As a consequence, such idea of sulfur-substitution of Fav drug for more appropriate favorability of participating in Fe-chelation process was sensed by results of this work proposing 1O2S compound as the most favorable one for doing the function. Hence, information about capability of TFav compounds for participating in Fe-chelation processes were provided in this work regarding the challenging issue of Fe-chelation in medication of COVID-19 patients. All results of this work were obtained by performing computations using the density functional theory (DFT) approach

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.