Abstract

It is shown that the steady-state probability distribution of stochastic Petri nets (SPNs) with product form solution can be efficiently computed using an algorithm whose space and time complexities are polynomial in the number of places and in the number of tokens in the initial marking of the SPN. Basic to the derivation of such an algorithm is a product form solution criterion proposed by J. L. Coleman et al. (1992). The algorithm relies on the derivation of a recursive expression of the normalization constant that is a generalization of that derived by J. P. Buzen (1973) for multiple class product form queuing networks with load independent service centers. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.