Abstract

Supersonic retropropulsion, or the initiation of a retropropulsion phase at supersonic freestream conditions, is an enabling decelerator technology for high-mass planetary entries at Mars. Supersonic retropropulsion relies on retrothrust to decelerate the vehicle. A thrust-driven interaction of underexpanded jet flow with the shock layer of a blunt body alters the aerodynamic characteristics of the vehicle. Little literature exists on analytical and computational modeling approaches for supersonic aerodynamic-propulsive interactions at moderate thrust levels and flight-relevant conditions. This investigation is an exploratory application of a steady, turbulent computational approach to supersonic retropropulsion flowfields using modern and historical test cases. The results obtained from this approach agree reasonably well with experimental data for the locations of the bow shock, stagnation point, and Mach disk for a retropropulsion configuration with a single nozzle at the nose. The surface pressure distributions agree less favorably, showing a pressure rise toward the shoulder that was not observed in the original experiment. The flowfield structures for a peripheral retropropulsion configuration agree qualitatively with the expected structures, but proper inboard jet flow expansion and interactions between individual jet flows are likely not being captured; accordingly, pressure is preserved inboard of the nozzles to higher thrust than was observed experimentally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.