Abstract

A sibilant fricative /s/ is generated when the turbulent jet in the narrow channel between the tongue blade and the hard palate is deflected downwards through the space between the upper and lower incisors and then impinges the space between the lower incisors and the lower lip. The flow eddies in that region become a source of direct aerodynamic sound, which is also diffracted by the speech articulators and radiated outwards. The numerical simulation of these phenomena is complex. The spectrum of an /s/ typically peaks between 4 and 10kHz, which implies that very fine computational meshes are needed to capture the eddies producing such high frequencies. In this work, a large-scale computation of the aeroacoustics of /s/ has been performed for a realistic vocal tract geometry, resorting to two different acoustic analogies. A stabilized finite element method that acts as a large eddy simulation model has been adopted to solve the flow dynamics. Also, a numerical strategy has been implemented that allows the determination, in a single computational run, of the separate contribution of the sound diffracted by the upper incisors from the overall radiated sound. Results are presented for points located close to the lip opening showing the relative influence of the upper teeth depending on frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call