Abstract

This paper concerns a study of pressure fluctuations beneath hypersonic shock-wave turbulent boundary layer interactions and the associated acoustic loading on a compression/expansion ramp. Using high-order methods, we have performed Direct Numerical Simulations at Mach 7.2. We compare the spectral analysis of the pressure fluctuations at various locations of the compression/expansion ramp with the spectra calculated beneath a hypersonic transitional boundary layer. Similarities and differences between the two hypersonic boundary layers, in the context of acoustic loading, are drawn. Extremely high values of pressure fluctuations are recorded after the shock re-attachment where we also observe the maximum pressure gradients indicating that acoustic loading is correlated with areas of high-pressure gradients. Finally, we discuss the impact of the boundary layer state (attached flow, turbulence bursts, recirculations, shock oscillations, shock re-attachment and expansion fans) on the frequency spectrum of the pressure fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.