Abstract

We place simple axioms on an elementary topos which suffice for it to provide a denotational model of call-by-value PCF with sum and product types. The model is synthetic in the sense that types are interpreted by their set-theoretic counterparts within the topos. The main result characterises when the model is computationally adequate with respect to the operational semantics of the programming language. We prove that computational adequacy holds if and only if the topos is 1-consistent (i.e. its internal logic validates only true Σ\(^{\rm 0}_{\rm 1}\)-sentences).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.