Abstract

Optical aberrations introduced by sample or system elements usually degrade the image quality of a microscopic imaging system. Computational adaptive optics has unique advantages for 3D biological imaging since neither bulky wavefront sensors nor complicated indirect wavefront sensing procedures are required. In this paper, a stochastic parallel gradient descent computational adaptive optics method is proposed for high-efficiency aberration correction in the fluorescent incoherent digital holographic microscope. The proposed algorithm possesses the advantage of parallelly estimating various aberrations with fast convergence during the iteration; thus, the wavefront aberration is corrected quickly, and the original object image is retrieved accurately. Owing to its high-efficiency adaptive optimization, the proposed method exhibits better performances for a 3D sample with complex and anisotropic optical aberration. The proposed method can be a powerful tool for the visualization of dynamic events that happen inside cells or thick tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call