Abstract

Recently, the classical auxiliary field methodology has been developed as a new simulation technique for performing calculations within the framework of classical statistical mechanics. Since the approach suffers from a sign problem, a judicious choice of the sampling algorithm, allowing a fast statistical convergence and an efficient generation of field configurations, is of fundamental importance for a successful simulation. In this paper we focus on the computational aspects of this simulation methodology. We introduce two different types of algorithms, the single-move auxiliary field Metropolis Monte Carlo algorithm and two new classes of force-based algorithms, which enable multiple-move propagation. In addition, to further optimize the sampling, we describe a preconditioning scheme, which permits to treat each field degree of freedom individually with regard to the evolution through the auxiliary field configuration space. Finally, we demonstrate the validity and assess the competitiveness of these algorithms on a representative practical example. We believe that they may also provide an interesting possibility for enhancing the computational efficiency of other auxiliary field methodologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.