Abstract

Computation tree logic model checking is a formal verification technology that can ensure the correctness of systems. The vast storage density of deoxyribonucleic acid (DNA) molecules and the massive parallelism of DNA computing offer new methods for computation tree logic model checking. In this study, we propose a computation tree logic model checking method based on DNA computing. First, a system to-be-checked and a computation tree logic formula are encoded by single-stranded DNA molecules. Second, these singlestranded DNA molecules are mixed to spontaneously hybridize and form partial or complete double-stranded molecules. Finally, a series of molecular manipulations are applied to detect the double-stranded molecules so that the result whether the system satisfies the computation tree logic formula is obtained. Biological simulations confirm the validity of the new method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call