Abstract

For $p\geq 2$, let $E$ be a 2-uniformly smooth and $p$-uniformly convex real Banach space and let $A:E\rightarrow E^{\ast }$ be a Lipschitz and strongly monotone mapping such that $A^{-1}(0)\neq \emptyset$. For given $x_{1}\in E$, let $\{x_{n}\}$ be generated by the algorithm $x_{n+1}=J^{-1}(Jx_{n}-\unicode[STIX]{x1D706}Ax_{n})$, $n\geq 1$, where $J$ is the normalized duality mapping from $E$ into $E^{\ast }$ and $\unicode[STIX]{x1D706}$ is a positive real number in $(0,1)$ satisfying suitable conditions. Then it is proved that $\{x_{n}\}$ converges strongly to the unique point $x^{\ast }\in A^{-1}(0)$. Furthermore, our theorems provide an affirmative answer to the Chidume et al. open problem [‘Krasnoselskii-type algorithm for zeros of strongly monotone Lipschitz maps in classical Banach spaces’, SpringerPlus4 (2015), 297]. Finally, applications to convex minimization problems are given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call