Abstract

We consider the numerical solution on unstructured dynamic meshes of the averaged Navier–Stokes equations equipped with the k– ε turbulence model and a wall function. We discuss discretization issues pertaining to conservation laws, moving grids, and numerical dissipation. We also present a robust spring analogy method for constructing dynamic meshes. We validate our implementation of this two-equation turbulence model and justify its usage for a class of vortex shedding problems by correlating our computational results with experimental data obtained for a flow past a square cylinder. We also apply our solution methodology to the two-dimensional aerodynamic stability analysis of the Tacoma Narrows Bridge, and report numerical results that are in good agreement with observed data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.