Abstract

General expressions are derived for the amplitude equation valid at a Turing bifurcation of a system of reaction-diffusion equations in one spatial dimension, with an arbitrary number of components. The normal form is computed up to fifth order, which enables the detection and analysis of codimension-two points where the criticality of the bifurcation changes. The expressions are implemented within a Python package, in which the user needs to specify only expressions for the reaction kinetics and the values of diffusion constants. The code is augmented with a Mathematica routine to compute curves of Turing bifurcations in a parameter plane and automatically detect codimension-two points. The software is illustrated with examples that show the versatility of the method including a case with cross-diffusion, a higher-order scalar equation and a four-component system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call