Abstract

This paper presents models that are suitable for computing steady and unsteady gaseous combustion with finite rate chemistry. Reynold averaging and large eddy simulation (LES) techniques are used to model turbulence for the steady and unsteady cases, respectively. In LES, the Reynold stress terms are modelled by a linear combination of the scale-similarity and eddy dissipation models while the cross terms are of the scale-similarity type. In Reynold averaging, the conventional k– ϵ two-equation model is used. For the chemical reactions, a 3-step mechanism is used for methane oxidation and the extended Zeldovich and N 2O mechanism are used for NO formation. The combustion model is a hybrid model of the Arrhenius type and a modified eddy dissipation model to take into account the effects of reaction rate, flame stretch and turbulent intensity and scale. Numerical simulations of a flat pulse burner and a swirling burner are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.