Abstract
<abstract> The Variable-order fractional operators (VO-FO) have considered mathematically formalized recently. The opportunity of verbalizing evolutionary leading equations has led to the effective application to the modeling of composite physical problems ranging from mechanics to transport processes, to control theory, to biology. In this paper, find the closed form traveling wave solutions for nonlinear variable-order fractional evolution equations reveal in all fields of sciences and engineering. The variable-order evolution equation is an impressive mathematical model describes the complex dynamical problems. Here, we discuss space-time variable-order fractional modified equal width equation (MEWE) and used exp $ (-\phi(\xi)) $ method in the sense of Caputo fractional-order derivative. Based on variable order derivative and traveling wave transformation convert equation into nonlinear ordinary differential equation (ODE). As a result, constructed new exact solutions for nonlinear space-time variable-order fractional MEWE. It clearly shows that the nonlinear variable-order evolution equations are somewhat natural and efficient in mathematical physics. </abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.