Abstract

The first NASA Space Shuttle flight (STS-1) produced an overpressure wave that exceeded preflight predictions by as much as 5 to 1. This second overpressure wave occurred just after the first overpressure wave produced by the lolid rocket booster igniter. To understand this second overpressure phenomenon, a numerical simulation effort was undertaken. Both the SRB static firing test and STS-1 geometries were studied for twodimensional (axisymmetric), inviscid and viscous flow. The inviscid calculations did not produce significant second overpressure waves. However, the viscous calculations did produce second overpressure waves that qualitatively agree with experiment. These overpressure waves were present in both the static firing test and STS-1 geometries. This second overpressure wave is generated by the motion of the boundary-layer separation point and the subsequent radial motion of the exhaust jet during the start-up of the SRB nozzle flow. The presence of the mobile launch platform exhaust hole wall amplifies this wave, but does not appear to be the source of any additional overpressure waves. The lack of good quantitative agreement between theory and experiment indicates that other overpressure sources, not accounted for by this simulation, may be present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.