Abstract

Designing a mission critical system, such as a remote surgery, e-healthcare, e-banking, or e-shopping system, is a challenging task. The continuity and criticality of operation in mission critical systems depend on their delay, capacity, reliability, and energy. In this study, the energy available at each node and the service-level agreements (SLAs) are influenced by the continuity and criticality of data transmission. SLAs are drawn as requested service time and service mean time to failure. For the failure-free operation of mission critical systems, the SLA energy cooperative reliable and quickest path problem (SERQPP) algorithm is defined between a specified source and destination. Analysis indicates that the SERQPP path is a reliable and quickest option for data transmission in remote healthcare applications. The performance of the proposed algorithm is analyzed using mean number of qualifying service set (QSS) paths, average hop count, and average energy efficiency. Simulations are used to determine the variation trends for the SLAs, energy, numbers of nodes, distinct capacities, and data required for the computation of the SERQPP. In the results, it is showing that the number of QSS paths and average energy efficiency are increased with the increase in SLA and energy. In addition to this, quantitative and qualitative comparative study shows that the proposed algorithm outperforms in computation of SERQPP without increasing the time complexity. Finally, the major features of the SERQPP algorithm are discussed and highlighted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call