Abstract

The heart of the equilibrium selection theory of Harsanyi and Selten (1988, A General Theory of Equilibrium Selection in Games, Cambridge, MA: MIT Press) is given by the tracing procedure, a mathematical construction that adjusts arbitrary prior beliefs into equilibrium beliefs. Although the term “procedure” suggests a numerical approach, the tracing procedure itself is a nonconstructive method. In this paper we propose a homotopy algorithm that generates a path of strategies. By using lexicographic pivoting techniques, it can be shown that for the entire class of noncooperative N-person games, the path converges to an approximate Nash equilibrium, even when the starting point or the game is degenerate. The outcome of the algorithm is shown to be arbitrarily close to the equilibrium beliefs proposed by the tracing procedure. Therefore, the algorithm does not compute just any Nash equilibrium, but one with a sound game-theoretic underpinning. Like other homotopy algorithms, it is easily implemented on a computer. Journal of Economic Literature Classification Numbers: C63, C72.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.