Abstract
A condition for the existence of a minimum eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem for an ordinary differential equation is determined. The problem is approximated by a mesh scheme of the finite element method. The convergence of approximate solutions to exact ones is studied. Theoretical results are illustrated by numerical experiments for a model problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.