Abstract

In this study, the standard kinetic theory based model with a modified drag correlation was successfully used to compute the mass transfer coefficients and the Sherwood numbers of FCC particles in a thin bubbling fluidized bed column using the additive diffusional and chemical reaction resistances concept. Also, the effects of the computational domain (two- or three-dimensional) and the reaction rate constant (low and high) are discussed. The computations show that the Sherwood numbers are in agreement with the measurement ranges for small particles in the fluidized bed system. The mass transfer coefficients and the Sherwood numbers are high near the inlet section, and decrease to a constant value with increasing height in the column. The two-dimensional computational domain simulations provide enough information to explain the phenomena inside a symmetrical system, but three-dimensional computational domain simulations are still needed for asymmetrical systems. Finally, the mass transfer coefficients and the Sherwood numbers increased with the larger reaction rate constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.