Abstract

The Hausdorff distance between two closed sets has important theoretical and practical applications. Yet apart from finite point clouds, there appear to be no generic algorithms for computing this quantity. Because many infinite sets are defined by algebraic equalities and inequalities, this a huge gap. The current paper constructs Frank-Wolfe and projected gradient ascent algorithms for computing the Hausdorff distance between two compact convex sets. Although these algorithms are guaranteed to go uphill, they can become trapped by local maxima. To avoid this defect, we investigate a homotopy method that gradually deforms two balls into the two target sets. The Frank-Wolfe and projected gradient algorithms are tested on two pairs of compact convex sets, where: (1) is the box translated by and is the intersection of the unit ball and the non-negative orthant; and (2) is the probability simplex and is the unit ball translated by . For problem (2), we find the Hausdorff distance analytically. Projected gradient ascent is more reliable than the Frank-Wolfe algorithm and finds the exact solution of problem (2). Homotopy improves the performance of both algorithms when the exact solution is unknown or unattained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.