Abstract

We studied obtaining exact solutions to a set of equations related to the SEIR (Susceptible-Exposed-Infectious-Recovered) model of epidemic spread. These solutions may be used to model epidemic waves. We transformed the SEIR model into a differential equation that contained an exponential nonlinearity. This equation was then approximated by a set of differential equations which contained polynomial nonlinearities. We solved several equations from the set using the Simple Equations Method (SEsM). In doing so, we obtained many new exact solutions to the corresponding equations. Several of these solutions can describe the evolution of epidemic waves that affect a small percentage of individuals in the population. Such waves have frequently been observed in the COVID-19 pandemic in recent years. The discussion shows that SEsM is an effective methodology for computing exact solutions to nonlinear differential equations. The exact solutions obtained can help us to understand the evolution of various processes in the modeled systems. In the specific case of the SEIR model, some of the exact solutions can help us to better understand the evolution of the quantities connected to the epidemic waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call