Abstract
The $\epsilon$-subdifferential of convex univariate piecewise linear-quadratic functions can be computed in linear worst-case time complexity as the level-set of a convex function. Using dichotomic search, we show how the computation can be performed in logarithmic worst-case time. Furthermore, a new algorithm to compute the entire graph of the $\epsilon$-subdifferential in linear time is presented. Both algorithms are not limited to convex PLQ functions but are also applicable to any convex piecewise-defined function with little restrictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.