Abstract

In this article, we study the problem of computing a tight lower bound on the dimension of the strong structurally controllable subspace (SSCS) in networks with Laplacian dynamics. The bound is based on a sequence of vectors containing the distances between leaders (nodes with external inputs) and followers (remaining nodes) in the underlying network graph. Such vectors are referred to as the distance-to-leaders vectors. We give exact and approximate algorithms to compute the longest sequences of distance-to-leaders vectors, which directly provide distance-based bounds on the dimension of SSCS. The distance-based bound is known to outperform the other known bounds (for instance, based on zero-forcing sets), especially when the network is partially strong structurally controllable. Using these results, we discuss an application of the distance-based bound in solving the leader selection problem for strong structural controllability. Further, we characterize strong structural controllability in path and cycle graphs with a given set of leader nodes using sequences of distance-to-leaders vectors. Finally, we numerically evaluate our results on various graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.