Abstract

The canonical decomposition of higher-order tensors is a key tool in multilinear algebra. First we review the state of the art. Then we show that, under certain conditions, the problem can be rephrased as the simultaneous diagonalization, by equivalence or congruence, of a set of matrices. Necessary and sufficient conditions for the uniqueness of these simultaneous matrix decompositions are derived. In a next step, the problem can be translated into a simultaneous generalized Schur decomposition, with orthogonal unknowns [A.-J. van der Veen and A. Paulraj, IEEE Trans. Signal Process., 44 (1996), pp. 1136--1155]. A first-order perturbation analysis of the simultaneous generalized Schur decomposition is carried out. We discuss some computational techniques (including a new Jacobi algorithm) and illustrate their behavior by means of a number of numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.