Abstract

The turbulent mixing noise of a supersonic jet is calculated for an axisymmetric convergent-divergent nozzle at the design pressure ratio. Aerodynamic computations are performed using the PARC code with a k-e turbulence model. LighthiU's acoustic analogy is adopted. The acoustics solution is based upon the methodology followed in the MGB code. The source correlation function is expressed as a linear combination of second-order tensors (Ribner's assumption). Assuming separable second-order correlations and incorporating Batchelor's isotropic turbulence model, the source term was calculated from the kinetic energy of turbulence. A Gaussian distribution for the time-delay of correlation was introduced. The CFD solution was used to obtain the source strength as well as the characteristic time-delay of correlation. The effect of sound/flow interaction was incorporated using the high frequency asymptotic solution to Lilley's equation for axisymmetric geometries. Acoustic results include sound pressure level directivity and spectra at different polar angles. The aerodynamic and acoustic results demonstrate favorable agreement with experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call